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A statistical model of Rayleigh-Taylor bubble fronts in two dimensions is introduced. Float and
merger of bubbles lead to a scale-invariant regime, with a stable distribution of scaled bubble radii and a
constant front acceleration. The model is solved for a simple merger law, showing that a family of such
stable distributions exists. The basins of attraction of each of these are mapped. The properties of the
scale-invariant distributions for various merger laws, including a merger law derived from the Sharp-
Wheeler model, are analyzed. The results are in good agreement with computer simulations. Finally, it
is shown that for some merger laws, a runaway bubble regime develops. A criterion for the appearance

of runaway growth is presented.

PACS number(s): 47.20.Bp, 05.70.Ln

I. INTRODUCTION

Rayleigh-Taylor (RT) instability occurs at an interface
between a heavy fluid over a light fluid in a gravitational
field [1]. Initial perturbations of the interface develop
into a mixing zone, topped by rising bubbles of light fluid
interleaved by falling spikes of heavy fluid. Experimental
[2] and numerical [3,4,9] work indicate that the width of
the mixing zone attains a constant acceleration indepen-
dent of the initial perturbation.

The dynamics of the outer envelope of the mixing zone
may be described in terms of bubbles rising and merging.
An individual bubble (such as in a periodic array) rises
with terminal velocity proportional to the root of its ra-
dius [1,5]. A small bubble adjacent to a large one is
washed downstream, while its large neighbor expands,
thus rising faster. This competition leads to an accelera-
tion of the front [5].

This description of the RT mixing zone was pioneered
by Sharp and Wheeler who proposed a model for bubble
rise and merger [1]. The bubbles in this model are ar-
ranged along a line, and are characterized by their height
h; and radius_r;. The bubbles rise according to
dh,/dt=c,\/gr;. Merger occurs when the height
difference between adjacent bubbles exceeds c, times the
radius of the smaller bubble. The surviving bubble radius
is set to the sum of the radii of the two bubbles that
merged. Thus the average velocity of the front increases
with each merger. Numerical simulations of the Sharp-
Wheeler (SW) model were performed by Gardner et al.
[6] and Glimm and Li [7]. They find that the bubble
front attains a constant acceleration independent of the
initial bubble distribution.

Other bubble competition models have been subse-
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quently developed. A model in which bubbles are
represented by point sources in a potential flow was
presented by Zufiraia [8]. Glimm et al. [9] developed a
model in which the bubble rise parameters are fitted to
hydrodynamic numerical simulations, and merger is
given by a superposition of the single bubble and front
evolution. Numerical simulations of these models show
that the bubble fronts attain a constant acceleration, in
agreement with experimental results.

Recently, Glimm and Sharp ([10] showed that
simplified dynamics of bubble-merger models may flow to
a scale-invariant regime. The growth rate in such a mod-
el was calculated by Zhang [10], and was found to be in
agreement with experimental results. However, the prop-
erties of the fixed distributions, the nature of the flow to-
wards them, and the effects of different merger laws have
not been studied.

In this article we describe a simple statistical model for
the dynamics of a front of merging bubbles. This model
uses only the bubble radii as dynamic variables (rather
than the radii and heights as in the SW model). A mean-
field evolution equation for the bubble-radius distribution
is developed. In Sec. II we solve the model analytically
for a simple merger law. We show that initial distribu-
tions flow, after a transient regime, into one of a family of
scale-invariant distributions (“fixed points”). Each of
these distributions is characterized by a different decay at
large radii. We map the basins of attractions of each
fixed point. In Sec. III we analyze the properties of the
fixed-point distributions for various merger laws, includ-
ing a merger law derived from the Sharp-Wheeler model.
The results are compared to computer simulations. The
effects of correlations between the radii of neighboring
bubbles are discussed. In Sec. IV we show that for some
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merger rules, a regime of runaway bubbles appears. A
criterion for the development of this regime is presented.

II. THE STATISTICAL MODEL

Previous models of bubble competition characterized
each bubble with several dynamical variables such as its
radius and height. In this article we present a statistical
model of bubble competition which uses only the bubble
radii as variables. This model includes the essential phys-
ics of the full problem, and is easier to analyze mathemat-
ically. We show, in Sec. III, that such a simplified model

can even reproduce quantitative results of more elaborate

models such as Sharp-Wheeler dynamics.

We consider an ensemble of bubbles of radii »;. For
simplicity we assume two-dimensional (2D) geometry: the
bubbles are arranged along a line. Two adjacent bubbles
of radii » and r’ merge at a rate w(r,r’) forming a new
bubble of radius » +r' (thus the sum of all bubble radii is
conserved). Here we make the important assumption
that the bubble heights (and possibly other bubble param-
eters) may be averaged out of the merger rate. Hence we
have a simple model in which the only dynamical vari-
ables are the bubble radii. The model may be visualized
as points scattered along a line, each disappearing with a
“half-life” dependent on the distance to its two nearest
neighbors.

The physics of bubble merger is included in w(r,r’).
We define g (r,¢)dr as the number of bubbles with a radius
within dr of r at time ¢#. An evolution equation for g (r,¢),
neglecting correlations between near-neighbor radii
(mean-field approximation), is

ag (r,t)

N(t)T=—2g(r,t)f0 g(r',olr,r')dr’

+fwg(r—r',t)g(r',t)a)(r—r’,r')dr' ,
0
(1)
where N (2) is the number of bubbles at time ¢,
n=["~ )
N= [ "g(ridr 2)

The first term on the right-hand side of Eq. (1) is the rate
of merger of a bubble of radius r with its neighbors, and
the second term is the rate of creation of bubbles of ra-
dius r by means of merger of two bubbles whose radii are
r’and r —r’'. Integrating Eq. (1) over r we get

dN (1)

T=—(w>N(t), (3)

where
— -2 «© ® ’ ’ ’
(w)=N07[° [ “g(r,0g (v, 000(r,r)dr dr’ .

To understand the dynamics of this model, we begin by
studying it with a simple merger law: o(r,7')=w(?), i.c.,
the merger rate is independent of the bubble radii. A nu-
merical simulation of this model is performed by scatter-
ing points along a line according to some initial distribu-
tion, and randomly removing points. It is easily seen that
no correlation between the lengths of adjacent segments
is produced, so the mean-field equation [Eq. (1)] is exact

in this case.

The dynamics may be analytically solved for this case.
We first switch to the Laplace transform of the radius
distribution, g (s,?), defined as

g(s,t)=f0°°exp(—sr)g(r,t)dr .

We include any time dependence of w in the time deriva-
tive of Eq. (1), and take w=1. Applying a Laplace trans-
form to Eq. (1) we have

dg(s,1) g2(s,1)

T=~2g(s,t)+m , 4)

whose solution is

p(1)?
{1/g(s5,0)+[p(£)—1]/N(0)} ’

g(s,1)= (5)

where p(t)=N(t)/N(t=0)=e "' is the fraction of bub-
bles remaining, and g(s,0) is the Laplace transform of
the initial radius distribution. From Eq. (5), we see that
the average radius is (r(¢))={(r(t=0))/p(t), as is
true for any merger law since the sum of bubble radii
is conserved. An initial & distribution g(r,z=0)
=N (0)8(r —ry) evolves into a series of 8 functions with
exponentially decreasing amplitudes:
g(rnt)=NQOp () S [1—p()]" " '8(r —nry) .

n=1
An initial distribution g (r, =0)=N (0)r exp(—r) yields

N (0)p (t)%exp(—r)sinh[rV1—p (1)]
V1—p(1) )

Both these distributions flow to

N(0)p (t)%exp[—r/{r(2))]
(r(t))

for large times. This behavior has been verified numeri-
cally (see Fig. 1).

We now ask which initial distributions flow into this
asymptotic distribution. For this purpose we take a
different approach to the solution of the model. At ¢ =0,
we regard the bubbles as points on a line with spacing
distributed according to P(r)=g(r,t =0)/N(t =0). We
now consider a segment of length x after a fraction g of
the points have been removed. If this segment is com-
posed of n initial segments, x =x,;+ - -+ +x,, then for x
large enough, its length distribution ﬁn(x) is given by the
central limit distribution of the sum of n random vari-
ables of distribution P(r). If P(r) has a finite average r,
and variance V, for instance, we get the Gaussian distri-
bution

g(rt)= (6

glrt)=

~ 1

P ex
" Vv P
The probability of finding a segment of length x is

(x —nry)?
2nV

(7N

P(x)=(1—¢q) 3 q"P,(x) . (8)

n=0

If P,(x) is Gaussian [Eq. (7)], the sum may be evaluated
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by the saddle-point method, yielding P(r)

~exp(—r/{r)) for r >>r,, in agreement with the above
results.

Initial distributions which fall off slower than x ~° at
large x have different central limit distributions. The dis-
tributions of sums of independent random variables
whose distributions fall off as P(x)~x ~1"# forO<pu <2
are known as Levy [11] distributions L,. For 0<pu <1,
P,(x)=L,(x/n'*), while for 1<p<2 we have
P,(x)=L,[(x —nry)/n'/*]. For an initial distribution
which falls off as c¢x 3’2, for instance, we have
L, ,(u)=2mcu’*exp(—mc?/u). Evaluating Eq. (8) for
this case (by replacing the sum by an integral) we find
that asymptotically, the segment distribution falls off as
P(x)~cx 7372, the same as the initial distribution. This
behavior is found for all distributions with 0 <pu <2. We
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FIG. 1. (a) Radius distribution function for w=1 at
N/Ny=0.1 (+), 0.05 (0), 0.02 (%), plotted against x =r/{r).
The line is the analytic result. Initial conditions were Ny =3000
bubbles with radii distributed uniformly [U(0,1)]. (b) Radius
distribution for initial conditions f(r,t =0)=r exp(—r), when
N/Ny= % The dashed line is the analytic result [Eq. (6)].
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see, therefore, that there exists a family of asymptotic dis-
tributions for our model dynamics, each derived from a
central limit distribution. The basin of attraction of each
asymptotic distribution is the basin of attraction of the
corresponding central limit distribution (see Ref. [11] for
a complete mapping of these basins).

The discussion above may be applied as a very simple
model of RT bubble competition. Assume that the rate
of merger is independent of bubble radii: the only dimen-
sional parameter is the gravitational acceleration. The
merger rate may thus be constructed from an accelera-
tion G (proportional to the gravitational acceleration) and
the average bubble radius: «=V'G /{r(z)). This simple
merger law falls within the framework of the above
analysis, i.e., o(r,7',t)=w(t). For this rule, it follows
from Eq. (3) that

N()=NO)1+IV'G/ryt)" %, (9)
(r())=ro(1+3V'G /rot)*, (10)

where r is the initial average radius. Thus, after a tran-
sient regime (¢ >>21/ ro/G ), the average radius attains a
constant acceleration {r(z))—(G /4)t?, independent of
the initial conditions. For all initial distributions with a
finite variance, the radius distribution flows to its asymp-
totic form

e
g(rD=N(0)—t ‘exp(—4r/Gt?) . (11)

Each bubble floats with a velocity proportional to the
square root of its radius. The average velocity of the bub-
ble front is thus proportional to the average root radius
(v(0))=b{(V'r(1)). Asymptotically we find that the
front moves at an acceleration of V'7G b /4, independent
of initial conditions.

For the simple merger law discussed in this section, we
find that the dynamics leads to a scale-invariant regime.
Actual bubble merger is strongly dependent on bubble
parameters. Simulations of this model for various merger
laws show that scale-invariant dynamics are attained for
a large class of laws (see Sec. IV for examples of merger
laws which do not reach a scale-invariant regime). In the
next section we study the scale-invariant properties of
our model for other merger laws.

III. SCALE-INVARIANT DISTRIBUTIONS

In this section we study the asymptotic regimes of the
bubble-merger model for various merger laws. We as-
sume that scale invariance develops after a transient re-
gime.

When a scale-invariant regime is attained, the system
parameters are independent of initial conditions, and de-
pend on time only through the fraction of bubbles
remaining (or, equivalently, on the average radius). We
define the scaled radius distribution function f as follows:

N(t

_ )
grt)= <r(t))f(r/<r(t))) . (12)

With this definition, using Eq. (2), we have
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J rdx =1 (13)

Inserting this definition into Eq. (1) we get an integro-
differential equation for f:

(w){f(x)-k%xf’(x)}=f(x)fowf(x')w(x,x')dx’
SN CERVED
Xw(x —x',x")dx', (14)

where x =r/{(r(t)) and w(x,x’) is the scaled merger
rate. Here we assume that o may be scaled, namely,
o(rr')=f(a)o(r/a,r' /a) for any a. For the simple
merger law of Sec. II we set o(x,x')=w, and
f(x)=exp(—x) indeed solves Eq. (14).

The constant acceleration attained by the bubble front
is due to the appearance of the scale-invariant distribu-
tion. In RT problems, the merger rate scales as

Vi{ryg .

_r_r_
(r)’ (r)
Each bubble floats with a velocity v =cV'rg. Thus, when

a scale-invariant distribution is reached, the interface
height y rises as y =agt?, with

olrr')=ow

a=2(olxx ) (Vx), (15)

where the averages are over the scale-invariant distribu-
tion f (x).
We now look at some asymptotic properties of f(x).

A. Solutions near x =0

If f(x) is bounded (or weakly divergent) at x =0, the
convolution term in Eq. (14) is negligible for small x. In
this limit, Eq. (14) takes the form

xf'(x)=2f(x){{w(x))/{w)—1},
(wx) = [ 7 f(xwx,x")dx" .
0
For finite {»(0)) we have
f(x)~x° where a=2[{w(0))/{w)—1]. (16)

For merger laws satisfying {w(x))/{®)~a/x™, with
m >0, we find

f(x)~exp 17)

mx

B. Sharp-Wheeler merger law

Realistic merger laws should include the following
properties: unstable equilibrium for the case of an ensem-
ble of bubbles of exactly the same radius [w(r,7)=0], and
diverging merger rates between bubbles of very different
radii [o(r,7')— oo for r >>r' and r <<r’].

The Sharp-Wheeler model, described in the Introduc-
tion, has the above properties and has been previously
studied [1,6,7]. We shall now derive a merger rate which
allows us to study the SW dynamics in the framework of

the present model. To eliminate the height variable, we
make the simplifying assumption that all bubble heights
are set equal after each merger. Indeed, the SW dynam-
ics quickly eliminate adjacent bubbles with a large height
difference, leading to a narrow height distribution [6,7].
This leads to a merger rate

V5 —v7r'|

min(r,r') ’ (18)

w(rr')=a
with a=c,Vg /c,.

This merger rule leads to a scale-invariant distribution
f(x). At x~0, {(o(x))~a{V'x )/x. From Eq. (17) we
thus expect f (x)~exp(—fB/x) near x =0.

We performed numerical simulations of the model with
this merger rule. As in the preceding section, the simula-
tion begins with points scattered on a line, according to
some initial distribution of segment lengths. Each point
is assigned a half-life which is the merger rate of its two
neighboring segments: w; =w(r;,r; ). At each step in
the simulation, a point is chosen at random with a weight
0;/SY_ 0, and erased. The half-lives are adjusted ac-
cordingly and a new point is chosen. We used initial uni-
form and exponential distributions of radii. In Fig. 2(a)
we present numerical simulation results for the asymptot-
ic radius distribution. At large x, f~exp(—yx) (with
v ~0.7), as seen in Fig. 2(b). In Fig. 2(c) the behavior at
small x is fitted to exp(—//x) (we find B~0.3). This re-
sult is in agreement with the above analysis. The asymp-
totic acceleration attained by the interface is given, in
this model, by a=ciga,/c,, where

IR s,

2\ min(x,x")

Using the asymptotic distribution found above, we find
a,~0.541£0.01, which is higher than the value ay~0.48
obtained from full simulations of the SW model [7]. In
these simulations, however, an area-conservation rule was
applied: after the bubble merger, the height of the surviv-
ing bubble was set so that its area was equal to the sum of
the areas of the two bubbles before merger. The reduc-
tion in the surviving bubble height is Ah =c,r3 /(r;+r,),
with r, <7;. When multiplied by the rate of merger, this
reduction in height leads to a negative asymptotic ac-

Qg

celeration of @’'= —c2gag/c,, where
, 1/ ]Vx —Vx'|min(x,x") [Vx —Vx'|
ao__ ’ N y . (19)
2 x+x £\ min(x,x’) /g

We find a;~0.05£0.01. Thus the total acceleration,
ay—ay~0.491+0.02, agrees well with the results for the
full SW model [7].

For this merger law, correlations between the radii of
neighboring bubbles are generated [6]. Bubbles with very
different radii quickly merge, while those with similar ra-
dii survive. Hence a positive correlation between radii is
expected. In Fig. 3 we plot the correlation

c(R)=C(r;, —rI))Nri =) /r2)y —=(r)?)

with the first four neighbors. Significant correlations are
attained with the nearest neighbor, ¢ (1)~0.2. This value
is in agreement with full simulations of the SW model [6].
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FIG. 2. (a) Scaled radius distribution function for Sharp-Wheeler merger rule. Stars are at 5% and O’s at 2.5% of initial 30 000
bubbles [the initial distribution is U(0,1)]. (b) Semilog plot f(x) vs x. (c) Semilog plot of f(x) vs 1/x shows that f(x)~exp(—B/x)

for small x.
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FIG. 3. Correlations between neighboring bubble radii for
the Sharp-Wheeler merger rule. The simulation started with
30000 bubbles, distributed uniformly, U(0,1). Correlations
were measured when 5% (%), 2.5% (0O) of the bubbles
remained.

Scale-invariant growth appears in many dynamical
models [12]. In the next section we demonstrate a
different type of growth regime.

IV. RUNAWAY BUBBLE REGIMES

For some merger laws, the model dynamics evolve into
a regime where a very large “runaway” bubble dominates
the merger process. In this section we study this
phenomenon and give a criterion for determining when it
will develop.

In order to demonstrate runaway growth, we consider
the rule o(r,r')=k(r—r')% We performed numerical
simulations of this rule for various initial conditions.
Simulation shows (Fig. 4) that for a pulse-shaped initial
distribution the mergers are uniformly distributed over
the sample for a time, until runaway bubbles appear. We
find that for narrower initial distributions, the onset of
runaway growth appears earlier (i.e., at a larger fraction
of bubbles surviving) in a given sample size.

Physically it is clear why runaway occurs earlier in
narrow distributions. In narrow distributions a single
merger produces a bubble whose radius is about twice the
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FIG. 4. Index of bubble merged vs number of simulation
steps, for three runs with an initial pulse distribution U(0,1).
Uniformly dispersed mergers are replaced by runaway bubbles
(streaks of mergers with adjacent indices). Note that due to the
cyclic boundary conditions, the bubbles at the two ends of the
front are equivalent.

average radius. The merger law gives strong preference
to this large bubble. It merges with ever greater proba-
bility, regardless of its neighbor’s size. Thus a runaway
regime is attained very early, in which large bubbles grow
in a field of small ones. In terms of the variable
x =r/{r), the initial distribution is pushed toward
x =0. For distributions with many large bubbles, howev-
er, the initial mergers occur when large bubbles are adja-
cent to small ones, small bubbles are eliminated, and a
scale-invariant distribution function may be attained for
a time. Runaway growth, however, ultimately appears.

We now present a criterion for the development of
runaway growth. Suppose that at time ¢z =0 runaway
growth begins. A single large bubble continually expands
in a field of smaller bubbles whose radius distribution is
fixed. The runaway bubble thus attains a radius of
Fmax ~ (No—N)ry, where ry is the average radius of the
bubble field, NV is the number of bubbles remaining, and
N, is the initial number of bubbles. For runaway growth
to continue, the merger rate of the runaway bubble must
overshadow the rest of the mergers

N
D max >> 2 @; :N<w >ﬁeld ’ (20)

i=1

where the sum is taken over the rest of the bubbles. For
w~(r —r')%, we find that the fraction of bubbles remain-
ing, p=N/N,, must satisfy p/(1—p)><<N,r3/2V
where V is the variance of the initial distribution. Thus
runaway behavior occurs for all initial distributions (with
a finite variance).

On the other hand, for a law like the SW merger
law, runaway growth cannot take place: @,
~v/'No—N /v ry and for this to dominate the mergers
we must have p/V1—p <<{@)g4qV 70/V' Ny: Run-

away may occur only when p <<1/ VN o> a negligible
fraction of the evolution time for large bubble systems.

From Eq. (20) it is evident that runaway growth is in-
trinsic only for merger laws which obey the following cri-
terion:

1013

fww(No(er-—p),r) (w)
0 ’

No(r) f(r)dr >>pTrT

where p is the fraction of bubble merged, f(r) is the
background bubble-radius distribution, and (7 ) and (w)
are the average background radius and merger rate when
runaway growth began. A sufficient condition for runa-
way growth in large systems is, therefore,

lim w(x,x") >

X —> 0

0] (21)

for all x’, while laws where

wl(x,x")

lim =0

X —

uniformly for all x’ are stable.

V. CONCLUSIONS

In this paper we considered a statistical model of
Rayleigh-Taylor bubble fronts. This model includes only
the bubble radii as variables, and bubble rise velocity and
merger rate as parameters. Bubble merger continuously
creates bigger bubbles, increasing the front velocity. In
Sec. II we presented mean-field equations for this model,
and solved them for a simple merger law. The dynamics
evolve to a scale-invariant regime, and thus to a constant
front acceleration. The initial radius distribution flows to
one of a family of stable distributions characterized by a
different decay at infinity. In Sec. III we found some
asymptotic properties of the scale-invariant distribution.
We showed that the Sharp-Wheeler model, which has
bubble heights as well as radii as variables, may be suc-
cessfully reduced to our model with an averaged merger
law. Runaway growth was demonstrated in Sec. IV.
Conditions on the merger law, sufficient for runaway
growth to occur, have been given.

We note that in the mean-field approximation, our
bubble-merger model is equivalent to the Smoluchowsky
model of coagulating systems [12], in which clusters of
particles (such as polymers in a solution) merge to form
larger clusters. Runaway growth is analogous to the ap-
pearance of an infinite cluster in these coagulating sys-
tems (the sol-gel transition).

The existence of scale-invariant regimes, with families
of fixed distributions, occurs in several growth problems
[13]. Thus it is probably a much more general
phenomenon.

Finally, in the context of RT front propagation, we
note that other merger models may be treated in the
framework of the present model, as demonstrated for the
Sharp-Wheeler merger law. The simple merger rule of
Sec. II may serve as a first approximation to the behavior
of bubble fronts with various initial conditions. The only
parameter in this approximation is the average merger
rate. For any other merger rule, the front acceleration in
the scale-invariant regime is given by Eq. (15). The
present model explains the experimentally observed con-
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stant front acceleration in a rather simple way. The ap-
proach to a scale-invariant distribution with an immense
basin of attraction explains why the front acceleration is

independent of initial conditions.
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